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Evolution towards an invariant density distribution under a 
discrete-time quadratic map 

C C Grosjean 
Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit te Gent, Krijgslaan 281, B-9000 
Gent, Belgium 

Received 23 December 1985 

Abstract. Recently, Nandakumaran has proved that under the discrete-time quadratic map 
x I + ,  = 4x,(1 - xl), all the probability density distributions 

x"(1-x)"  
rg) (x)  = O S X S l  n=0,1 ,2 ,  

B ( n + l , n + l )  

converge towards an invariant limit density associated with the map when t tends to infinity. 
The purpose of the present paper is to generalise this result. Starting from the Fourier 
series expansion of any real single-valued function which satisfies the Dirichlet conditions 
in [0, 7r/2], a broad class of normalised initial functions {wo(x)lO<x< 1) is obtained, 
each of which is the sum of a convergent series involving the Chebyshev polynomials of 
both kinds. The evolution equation for this class of functions under the map mentioned 
is found explicitly. It is shown that the absolute convergence of the series expansion of 
the symmetric part in an initial wo function is a sufficient condition to ensure an evolution 
for 2 -  +CO towards the same invariant limit density as obtained by Nandakumaran with 
the infinite set of particular initial densities $)(x). Some auxiliary results related to the 
treatment of the considered problem are also presented. 

In a recent letter, Nandakumaran (1985) studied the evolution of the probability density 
distribution 

x"(1 -x)"  
rg ' (x)  = v x  E [O, 11 V f l € N  B(n + 1, n + 1) 

under the discrete-time quadratic map 

xr+l=4xr(i -xt) (2) 
and showed that it converges towards the invariant limit density 

1 
r (x )  = 

?T[x(l -X)]"Z 
v x  E [O, 11 (3) 

for every value of n, thus generalising the result obtained by Falk (1984) in the special 
case n = 0. Formulated more explicitly, one constructs the sequence {r;")(x) 1 t E No} 
generated by 

x)1/2) + rjn) (1 + (1  -x)'13] V t € N  (4) 
2 

1 
r::),(x) = 

4(1-x)"2 

starting from ( I )  and it appears that, for any n E N, 

1 lim r $ " ' ( x )  = 
f++m T [X( l  -x)]l'2. (5) 
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3536 C C Grosjean 

Since the algorithm (4) is linear and homogeneous with respect to r and the limit 
density (3) is independent of n, it is clear that any probability density distribution 
which is a polynomial in integer powers of x(1 -x ) ,  i.e. 

Y 

( 6 )  
x“ (1 -x )”  

c ,=1  VEN,  v x  E [O, 11 
= so cn B( n + 1, n + 1 ) n =o 

also approaches (3 )  under the transformation (4). This immediately raises the question: 
is any normalised initial function wo(x) defined on [0, 13 and possibly subjected to 
certain conditions, also endowed with the property that, under the transformation (4), 
it approaches (3)? In this paper, a broad class of functions having this property will 
be obtained. 

It is well known that if a real single-valued function f ( c p )  defined on [ - lr, lr] 
satisfies the conditions of Dirichlet, it can be expanded in a unique way into a Fourier 
series in terms of cos ncp and sin ncp with integer n values. If one maps [ - lr, lr] linearly 
onto [0, lr/2], one arrives at 

a, +a, 

2 , = I  
f(40 - lr) = g( 0)  = -+ 1 (a, cos 4ne + b, sin 4ne) (7a) 

with 

Next, setting x = (sin e ) 2 ,  with 0 = sin-1(x1’2) as inverse, x being restricted to [0, 13, 
one obtains 

a, +x 

2 n = l  
g(sin-’x’’*)= w,(x)=-+ [a,T2,(1-2x)+2b,x”2(1-x)”2U2,-l(1-2x)] (8a)  

with 

where T and U are the familiar symbols for the Chebyshev polynomials of the first 
and the second kind, respectively. Note that the right-hand side of ( s a )  may be 
transformed in such a manner that wo(x) is expressed solely in terms of functions 
depending on x through the argument x(  1 - x):  

a, +x 
w, (x )=y+  (a,Tn[1-8x(1-x)] 

n = l  

*4b,{x(l- x)[ 1 -4x( 1 - ~ ) ] } ~ ’ ~ U , , - 1 [ 1 - 8 ~ ( 1  - x ) ] )  (9) 
in which the + sign refers to 0 s x s f whereas the - sign holds for f < x s 1. If the 
real single-valued function w,(x) defined on [0, 13 is bounded and continuous, possibly 
except at a finite number of abscissae xl, x 2 , .  . . , xq in IO, 1[ where it exhibits finite 
jumps, if at any such point xp 
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and if [0,1] can be subdivided into a finite number of open subintervals in each of 
which wo(x) is monotonic, lato sensu, then the series in (9) which is deduced from 
(7a) is convergent for any x E [0, 11, its sum is wo(x) and the convergence is uniform 
in any subinterval of [0, 11 not containing a discontinuity of wo(x) or having such an 
abscissa as a bound. Note that the series constructed with the a coefficients and the 
b coefficients separately are also convergent and that 

a, 
f [ ~ ~ ( ~ ) + w , ( i - x ) ] = - +  1 anTn[1-8x(1-x)] (1 la )  2 n = l  

ts 

+[W,(X)- ~ 0 ( 1 - ~ ) ] = 4 [ ~ ( 1 - ~ ) ] ~ ' * ( 1  - 2 ~ )  1 bnUn-1[1-8x(1 -x)].  (1 lb)  

If wo(x) is to play the role of probability density distribution, it should be normalised 
to unity in [0,1]. On account of the uniformity of the convergence of (9) in the intervals 

n = l  

IO,  xl[, lxl, x2[, . . . , Ix,, I[, we have 

Tn[1-8x(1-x)]dx 

cos 4n8 sin 2 8  d8 
2 n = l  

a, y an 
2 .=14n2-1 

- -_  -- - 1. - 

It should be mentioned, however, that under the assumptions made, wo(x) is not 
necessarily positive-semidefinite on [0, 11. Thus, we do not only consider functions 
representing probability density distributions, but also functions which may change 
sign a (finite) number of times in [0, 11 provided that they can be normalised to unity. 

Thus, starting from wo(x) represented by (8a) or (9) under the conditions mentioned, 
we construct the sequence 

(13) Wl(X), w2(x), . . . ,  wm(x), . . . 
using the algorithm 

(1 +(1  -x)1'2)] V t E N .  (14) 
2 + WI 4( 1 - x ) " ~  WI+,(X) = 

First of all, we notice that the part of wo(.x) which is antisymmetric with respect 
to x = 4, namely (1 1 b), yields no contribution to wl(x) and therefore also none to the 
other functions in (13). Hence, using wo(x) as the initial function is identical to starting 
the sequence (13) from 

a, 
(15) Wiym(x) = f[ wo(x) + w,( 1 - x) ]  = -+ 1 anTn[ 1 - 8x( 1 -- x)]. 

2 n = l  

Next, replacing x by [ 1 - (1 - x)"*]/2 in (151, we find 

and the equality remains valid in [0, 11 since we have simply carried out a bijective 
mapping 

Y E  [O, 11 x E [O, f l  (17) x = f[ 1 - (1 -y)l'2] y = 4 ~ ( 1  - x )  
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replacing y by x in the end. This can be done similarly for the replacement of x by 
[ 1 + (1 - x)'/']/2 and hence 

The same procedure may be repeated an arbitrary (finite) number of times, without 
any need for verifying at each step that the series of transformed terms is still convergent 
and has the corresponding transformed w function as its sum, since the algorithm is 
based on carrying out the same changes of variables on both sides of an equality by 
means of bijective mappings. Consequently, after m transformations, we have 

+m 

wm(x!=[?] + C arz[Tn[1-8~(1-x)Ilm MENo (19) 
m n = l  

where [. . .Im symbolises the result of applying the relation (14) m times, namely with 
t = 0, 1, . . . , m - 1, successively. According to Nandakumaran (1985), we can write 
directly 

[ F; cos( $4 sin[ ++; (1 - $4 

in which 

e = sin"(x''2) v x  E [ O ,  11. 

The remaining task consists in finding the mth transform of T,[ 1 - 8x( 1 - x)] whereby 
n E No, making use of Nandakumaran's result for the transforms of the positive integer 
powers of xi1 - x). Introducing the shorthand notation 

Nandakumaran's formula for the mth transform of x"(1 -x)" is 

[x"( l  -x)"], = ( -  1)" ( - l )k (  2 n + l  )Fm(0 ,2n-2k+ l )  
24n+1[X(i -X)]'" k = O  

still with the relation (21) connecting 8 and x. The transforms of x"(1-x)" involve 
( n  + 1) expressions of the kind (22). In the appendix, it is proven for n 2 1 that the 
transforms of T'[ 1 - 8x( 1 - x)] involve only two Fm functions: 
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with n E No, m E No, Vx E [0,1], 8 = sin-'(x'/'). Consequently, 

Wm(X)=2m+i[x(l - x ) l l / 2  [ao sin( 7r/2") 
cos[(r  -28)/2"] 

cos[(2n + 1 ) ( ~ - 2 8 ) / 2 " ]  + y  n = l  an( sin[(2n + 1)7r/2"'] 

- cos[(2n - 1 ) ( ~ - 2 8 ) / 2 " ' ]  
sin[(2n - 1)7r/2"'] 

where 

2 8 = ~ 0 ~ - ' ( 1 - 2 ~ ) .  

When one lets m tend to + oc, in every term on the right-hand side, one obtains the series 

and by virtue of the normalisation condition (12), the sum of this series is equal to 
the invariant density distribution (3) .  However, how far one can claim that the limit 
of w,(x) when m+ +a is equal to the sum of the series (26) constructed by means 
of the limits of all terms in the right-hand side of (25) is an open question. A sufficient 
condition which will create uniform convergence, but which will unfortunately entail 
an additional restriction on the symmetric part of wo(x), can be obtained as follows. 

From the first expression of Fm( 0,2p + l ) ,  it is clear that 

I F m  ( o , ~ P  + 1 I 1 ve E [o, 4 2 1  V m E N o  V p  E N. (27) 

Hence, from ( 2 5 )  we deduce 
I 

[ x ( 1 - x ) ] W, ( x ) - U, F, ( 8, 1 ) + C a, [ F, ( e, 2 n + 1 ) - F, ( e, 2 n - 1 ) ] 
l l = l  

If the numerical series 
+X i 4 

-+ c 14 2 n = 1  

constructed with the coefficients of the expansion (15) is assumed to be convergent, 
then for any given arbitrarily small positive number E ,  there exists a positive bound 
N E ,  independent of m, such that the left-hand side of (28) is smaller than E as soon 
as 1 > for any m E No. This is uniform convergence with respect to m and con- 
sequently, we have 

which proves that 

1 
(31) 

I lim w,,(x) = - 
,t7-.fX n [ x ( l  - X ) ] l ' 2  
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again by virtue of (12). But the convergence of (29) is precisely the condition of 
Weierstrass' criterion ensuring the absolute and uniform convergence of 

a,  ,+ a, cos4n8 
L n = l  

in 0 s 8 ~ r / 2  and this, in turn, entails the continuity of 

i {g (e )+g[ (d2) -81 )  

in [0, 7r/2] or, equivalently, the continuity of W;"(x) in [0,1]. The conclusion is as 
follows. 

If, in [0, 11, the initial function wo(x) is the sum of an arbitrary real, single-valued, 
bounded function antisymmetric with respect to x = i, and a normalised, real, single- 
valued, continuous function symmetric with respect to x = t ,  having an absolutely 
convergent series expansion of the type (1 1 a )  in [0,1], then under the algorithm (14) 
the following equality holds: 

1 
lim w,,,(x)= 

m + + x  T [ X (  1 - x)]"2 * 

The convergence of (29) is a sufficient, but not a necessary, condition because taking 
the limit on both sides of (25) when m-, +cc could lead to an equality even if (29) is 
not convergent. Hence, starting the process of successive transformations from a 
function wo(x) in which the part Wiym(x) involves a number of finite jumps may also 
yield (32) and it is my conjecture that it does, but at the moment I can give no proof 
of this conjecture. 

I wish to make three final remarks. 
(i) The mth transform of Tn[l -8x(1 -x ) ]  under (14) is expressed in terms of a 

difference of two F,,, functions, according to (24). The polynomial functions whose 
mth transform involves only one F, can easily be obtained by combining (24) 
rewritten as 

1 
[COS 4ne1, = [ F m ( 8 , 2 n + l ) -  

4[ X(  1 - x)] 

and 

which follows from (23) for n = 0. In this way, we have 
1 1 

- ~ , ( 8 , 2 n + i ) = ; [ i ] , +  [ c o s ~ ~ ~ I , , ,  4[ X(  1 - x)] k = l  

cas4k8],,,=t[ sin(4n +2)8 -1 =;[u,.(l-2x)Im. 
s in20  , 

Hence 

valid for any m E No, any n E N and with 8 and x still connected by (21) or equivalently 
by 28 = cosC1( 1 - 2x). 
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(ii) Nandakumaran’s formula 

[rs,rs,. . . r,,(sin’ = (sin @)*”+’ o s e = z T / 2  (34) 

rs(x) = f[ 1 + s(  1 - x)”’] 

where 

s = * l  

e r - I  
a=-+ c f(l+Sj)T/2J 2‘-I , = I  

not only contains a printing error, namely the subscript s, in (34) should be replaced 
by sf-’, but it is also incorrect from t = 3 onward. Leaving out the irrelevant exponents 
in (34), momentarily, I assert that writing 

T 6 r - 1  

rs,r s 2 . . .  r s , - l ( s in’e)=s in’ (F+ / = 1  c ( l + s , ) p )  0 s  9 s  5712 (35) 

is erroneous for t 3 3. This can easily be verified in the simplest case, namely t = 3, 
when one compares 

rs,rs2(sin2 0 )  =t+fs1[f-fs2(1 -sin2 e)1/2]1/2 

sin’ @ = sin2[: e + (1 + s , ) : ~  + (1 + ~ , ) Q T ] .  

(36) 

with 

(37) 

For (sl,  s2) = (1, - 1) and ( - 1, - l) ,  the two right-hand sides are equal, but for (s l ,  s2)  = 
( 1 , l )  and ( -  1, l ) ,  they are not and a permutation can be noted. The proof of a 
formula of type (35) is based upon the fact that every application of the operator r, 
transforms the square of a sine into the square of another sine, but the error which 
has been committed is that the sign of the intermediary cosine was not properly taken 
into account. Indeed, 

f + f s ( l  -sin2 t+fs  cos a 

holds provided 0 s a < 712, whereas 

~ + f s “ - s i n ’ a ) ” ’ = f - ~ s  cos a 

should be written when 7r/2 < a S T,  the two formulae being valid for a = ~ / 2 .  Hence, 
by virtue of 

r-(sin2 e) = sin’ fe 
we find in the case of (36): 

r+(sin2 e )  = cos’ f e  = sin’(f8 + f ~ )  o s e s t T  

rslr-(sin2 e )  = t + f s , ( l  - s in2fe)1 /2=i++s l  c o s f e  =sin’[:e+(~+s,)fT] 

in agreement with (37), and 

rSlr+(sin2 e) = ++ is , [  1 - sin2(+@ + + T ) ] ” ~  = f - fs, +fT) 

= sin2[a8 + ( I  - s , ) : ~  + f ~ ]  

which does not agree with (37). These results may be united by writing 

rs1rs2(sin2 e )  =sin2[:e+(1 - s 1 s z ) ~ ~ + + ( 1 + s 2 ) ~ ~ ] .  

The generalisation of this formula, i.e. 
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can be proven by complete induction. Still assuming 0 d 6 zs r / 2 ,  we have 

8 "  
rSlrs2.. . rSn+l(sin2 e )  [ I + (  - ~ ) " - J S ~ + ~ S ~ + ~ .  . . s,+l 

2 2  

where the cos' argument belongs to 

CO, 

[.rrP,fl[ 
when ~ 2 ~ 3 .  . . s,+, = ( -  1)" 

when ~ 2 . ~ 3 .  . . s , , + ~  = ( -  l ) n t l  

Consequently, 

rsIrs2.. . rsn+,(sin2 e) 

=;+~(- l )"s ,s*. .  * S n + l  cos :+ 1 [l+(-l)n-J+lsjSj+l . .  .s"+ll;) ( e " + I  2 j = 2  

7T 
sin2 -+ 11 +( - l)"-j+lsjsj+l . . . s , , + l ~  p) 

2"+l j = 2  i ( e "+' 
when s l s 2 . .  . sntl  = ( -  1)" 

=sin'(r; ;r i+[l+(-l)nsls*. .  e . s n + , l : r  

n t l  

J = 2  

which is indeed the right-hand side of (38) after replacement of n by n + 1. 

result (38) leads to the following formula: 
If one wishes to correct (35) while keeping the right-hand side unmodified, our 

where 

In conclusion, the formulae (12j  and (13) in Nandakumaran (1985) should read for 
t 2 - 2 :  

[rslrr, .  . . r?,-,(sin2 = (sir, @)'"+I (40) 

where 

x 6 1-1 
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Despite the error in (12) and (13), the final results of Nandakumaran (from (15) 
onward) are correct thanks to the fact that the final operation in his paper consists in 
summing with respect to sl, s 2 , .  . . , s t - ] ,  each s taking on the values + 1 and - 1. 
Considering that (38) and (39) are equivalent (with n = t - l ) ,  and that when the group 
of variables sl, s 2 , .  . . , s , - ~  runs over the set of all permutations with repetition of the 
elements + l  and -1 taken 1-1 at a time in (39), the group of variables 
U', U*, . . . , u , - ~ ,  s,-, does the same, it is clear that the error disappears in the course 
of the summation process. 

(iii) Near the end of his letter, Nandakumaran makes use of the equality 

= 24" V n E N  (42) 
2 n + l  1 

2n - 2 k +  1 
( -  1)" 

B ( n + l ,  n + l )  k = O  

which he mentions without proof as a generalisation of a few special cases. By 
coincidence, I was recently confronted with the same equality in research work of an 
entirely different nature. The proof of (42) is given in appendix A of Grosjean (1986). 

Acknowledgment 

The author is indebted to Dr H De Meyer for having brought the subject of this paper 
to his attention. 

Appendix. Proof of (24) 

If 

then, on account of (23), 

n 1 - - 

x ( - 1)' ('j; ') F, ( 8,2j - 2 k + 1) 
k - 0  

1 n 1 ( - 1)", ( e, 2s + 1) - - 
2[x( 1 - x)]''2 s = o  

n E N O  
, =s  

Substituting x = sin2(p/2) in ( A l ) ,  we find 

V v E [ - - , - l  

and therefore, when s ~ { O , l , .  . . , n}, 

cos 2nq sin p sin(2s + 1)cp dcp = sinzJ+' cp sin(2s+ l ) q  dp. ('43) 
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But 

sin2’+’ cp sin(2s + 1)cp dcp r2 
(e’? -e-”)2Jt1 sin(2s+l)cp dcp 

1 

=fiJ 2=J ( - l ) p ( 2 j 1 1 )  i:l2sin(2j-2p+1)cp sin(2s+l)cpdcp 
p = o  

( -  1)JT 2j+ 1 

when O C j < s - l  (0  

when j 2 s. 

Consequently, (A3) yields 

( - 1 ) ’ : ~  $( C. 2 j + l  ) = ~ ~ 2 c ~ s 2 n c p s i n c p s i n ( 2 s + l ) p d c p  
j = r  j - s  

and so 

which proves (24) for any n E No. 
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